Circular Jacobi Ensembles and Deformed Verblunsky Coefficients

نویسنده

  • P. BOURGADE
چکیده

Using spectral theory of unitary operators and the theory of orthogonal polynomials on the unit circle, we propose a simple matrix model for the following circular analogue of the Jacobi ensemble:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimal Rank Decoupling of Full-Lattice CMV Operators with Scalar- and Matrix-Valued Verblunsky Coefficients

Relations between halfand full-lattice CMV operators with scalarand matrix-valued Verblunsky coefficients are investigated. In particular, the decoupling of full-lattice CMV operators into a direct sum of two half-lattice CMV operators by a perturbation of minimal rank is studied. Contrary to the Jacobi case, decoupling a full-lattice CMV matrix by changing one of the Verblunsky coefficients re...

متن کامل

ar X iv : 0 71 1 . 26 95 v 1 [ m at h . SP ] 1 6 N ov 2 00 7 REGULARITY AND THE CESÀRO – NEVAI CLASS

We consider OPRL and OPUC with measures regular in the sense of Ullman–Stahl–Totik and prove consequences on the Jacobi parameters or Verblunsky coefficients. For example, regularity on [−2, 2] implies lim N →∞ N −1 [ N n=1 (a n −1) 2 +b 2 n ] = 0.

متن کامل

Lieb-Thirring and Bargmann-type inequalities for circular arc

For measures on the unit circle with convergent Verblunsky coefficients we find relations in form of inequalities between these coefficients and the distances from mass points to the essential support of the measure.

متن کامل

Two parameters circular ensembles and Jacobi-Trudi type formulas for Jack functions of rectangular shapes

Jack function theory is useful for the calculation of the moment of the characteristic polynomials in Dyson’s circular β-ensembles (CβE). We define a q-analogue of the CβE and calculate moments of characteristic polynomials via Macdonald function theory. By this q-deformation, the asymptotics calculation of these moments becomes simple and the ordinary CβE case is recovered as q → 1. Further, b...

متن کامل

Linear Statistics of Point Processes via Orthogonal Polynomials

For arbitrary β > 0, we use the orthogonal polynomials techniques developed in [10, 11] to study certain linear statistics associated with the circular and Jacobi β ensembles. We identify the distribution of these statistics then prove a joint central limit theorem. In the circular case, similar statements have been proved using different methods by a number of authors. In the Jacobi case these...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008